Aug. 1978 Un nouvel hétérocycle telluré: le benzisotellurazole-1,2. 2. Structure cristalline et moléculaire du benzisoselenazole-1,2 et du benzisotellurazole-1,2.

Henri Campsteyn,* Léon Dupont, Josette Lamotte-Brasseur et Marcel Vermeire

Laboratoire de Cristallographie, Institut de Physique B5, Université de Liège au Sart Tilman, B-4000 Liège, Belgique Reçu le 4 Novembre 1977

La détermination de la structure cristalline du benzisoselenazole-1,2 et du benzisotellurazole-1,2 a permis d'expliquer les propriétés physiques inattendues (point de fusion et solubilité) du dernier composé. Les anomalies observées résultent de l'existence, dans l'empilement du dérivé telluré, de liaisons intermoléculaires Te... N extrêmement courtes (2.4 Å).

J. Heterocyclic Chem., 15, 745 (1978)

Introduction.

La synthèse du benzisoselenazole-1,2 (1) et du benzisotellurazole-1,2 (2) a été décrite par R. Weber, J. L. Piette et M. Renson (1 et 2). Ces auteurs ont montré que le composé 1 et son analogue soufré (3) sont très solubles dans l'éther de pétrole tandis que 2 est très peu soluble dans ce liquide. D'autre part, ils ont trouvé, respectivement pour les substances 3, 1 et 2, des points de fusion de 39,57 et 173° alors que l'on s'attend pour 2 à une valeur inférieure à 100°.

Figure 1. Numérotation des atomes.

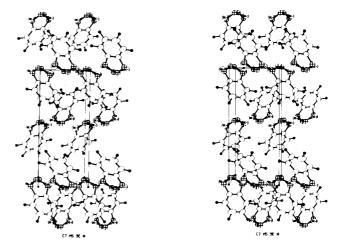


Figure 2. Vue stéréographique de l'empilement du benzisoselenazole-1,2.

Tableau 1

Données physiques et cristallographiques.

	$\mathrm{C_{7}H_{5}NSe}$	C_7H_5NTe
	$P2_{1}2_{1}2_{1}$	P2 ₁ /a
a (Å)	6.036 (3)	21.516 (10)
b (Å)	14.127 (4)	13.696 (6)
c (Å)	7.803 (8)	7.969 (4)
β (°)	90	112.71
Z	4	12
F (000)	352	1272
Volume de la maille (Å ³)	665.4	2166.2
M moléculaire	182.1	230.7
Densité calculée	1.82	2.12
Coefficient d'absorption	5.8	41.69
(cm ⁻¹)		
Dimensions du cristal	$0.5 \times 0.5 \times 0.4$	$0.4 \times 0.3 \times 0.2$
(mm ³)		
Nombre de réflexions		
mesurées	1691	4914
Nombre de réflexions		
observées $(1 \ge 2\sigma(1))$	697	2751

Les corrections de Lorentz et de polarisation ont été effectuées, pas celles d'absorption.

Tableau 2

Caractéristiques de l'affinement.

C ₇ H ₅ NX	C ₇ H ₅ NSe Méthode		C ₇ H ₅ NTe Méthode		
	de détermination	d'affinement	de détermination	d'affinement	
X	Fourier	Anisotrope	Fourier	Anisotrope	
C, N	Fourier	Anisotrope	Fourier	Anisotrope	
sauf C ₃ et N ₂	Calcul	Isotrope	Fourier	Anisotrope	
Н	Calcul	Non affinés	Calcul	Non affinés	
sauf H ₃	Non calculé				
Coefficient de reliabilité final (%)	8,1		6,2		
pour (réflexions observées)	669		2670		

Figure 3. Vue stéréographique de l'empilement du benz- isotellurazole-1,2.

PARTIE EXPERIMENTALE

Les deux structures ont été mesurées sur un diffractomètre à quatre cercles Hilger et Watts avec la radiation K_{α} du molybdène (0.7107 Å). Le cristal du dérivé 1, instable, a été mis sous capillaire. Les principales caractéristiques physiques et cristallographiques des deux composés apparaissent dans le tableau 1. Résolution des structures.

Les structures cristallines ont été resolues par méthode directe à l'aide du programme Multan (3). Dans les deux cas, la solution correspondait au "set" ayant la meilleure valeur du "Combined Fom". L'affinement a été réalisé par moindres carrés dans l'approximation des blocs diagonaux (4). Le tableau 2 donne un bref résumé de l'affinement.

Description des structures.

a) Structure moléculaire.

La structure du dérivé sélénié se distingue essentiellement par l'existence d'un désordre d'orientation. Les molécules peuvent se trouver dans deux positions, également probables et réparties de façon aléatoire dans le cristal, qui se correspondent par une rotation de 180° autour de la perpendiculaire aux liaisons C₅-C₆ et C₉-C₈ contenue dans le plan benzénique (cf. Fig. 1 pour la numérotation). Dans la solution trouvée, le désordre se traduit par l'apparition de deux pics pour chacun des atomes Se, N et C₃; les

deux orientations du noyau benzénique ne peuvent pas être discernées. Il en résulte que, dans le tableau 3 des coordonnées (5), les atomes C₄, C₅, C₆, C₇, C₈ et C₉ de la première orientation deviennent respectivement C₇, C₆, C₅, C₄, C₉ et C₈ pour le second site.

Pour simplifier l'écriture, les deux molécules du composé 1 seront notées SeN₁ et SeN₂ tandis que les trois molécules non équivalentes du dérivé 2 seront numérotées TeN1, TeN2 et TeN3 (leurs atomes portent respectivement les numéros de 1 à 9, de 11 à 19 et de 21 à 29).

Les tableaux 4 et 5 montrent les longueurs de liaison et les angles de valence. Tous les paramètres géométriques sont proches des valeurs attendues et les molécules sont planes (les écarts à la planéité sont de l'ordre des déviations standards).

b) Empilement.

Cristal 1. Les principales interactions, reprises dans le tableau 6, sont des contacts de van der Waals. La figure 2 donne une vue stéréographique de l'empilement.

Cristal 2 Le tableau 7 contient la liste des distances intermoléculaires les plus courtes. Les interactions Te... N de 2.4 Å sont proches de liaisons chimiques. La structure cristalline résulte donc d'un empilement de chaînes comparables à des polymères (fig. 3).

Conclusion.

La valeur anormale du point de fusion et de la solubilité

	Tal	bleau 3		TeN3	X/1	A	Y/B	Z/	'C
	0 1 1	¢		Te 21	0.6873		.1013 (1)	0.854	
	Coordonnee	s fractionnaires		N22	0.781	, ,	.033 (1)	0.993	
SeN	X/Z	Y/B	Z/C	C23	0.784		.013 (1)	1.135	
	,			C24	0.609	` '	.030 (1)	1.098	
Se site 1	1.2182(5)	0.9675 (2)	0.4139 (4)	C25	0.607	. ,	.024 (1)	1.237	
Se site 2	0.7954 (5)	0.9876 (2)	0.5757 (4)	C26	0.663	• /	.070 (2)	1.358	
N site 1	0.948 (3)	1.016 (1)	0.468 (2)	C27	0.724		.069 (1)	1.330	
N site 2	1.019 (4)	1.012 (1)	0.411 (3)	C28	0.725		.016 (1)	1.184	
C3 site 1	0.841 (4)	0.968 (2)	0.605 (3)	C29	0.669	$(1) \qquad 0$.034 (1)	1.066	(2)
C3 site 2	1.202 (4)	0.949(2)	0.453 (3)	du henz	isotellurazole-1	2 résulte d	'un empileme	nt extrême	ement
C4	1.312 (2)	0.802 (1)	0.619 (1)	narticuli	er faisant appai	aître des liais	ons intermolé	culaires Te	N
C5	1.247 (2)	0.740 (1)	0.742(2)	tree cou	rtes (2.4 Å).	artic des man	ons intermore	culaires 10	
C6	1.045 (3)	0.748 (1)	0.824 (1)						
C7	0.896 (2)	0.821 (1)	0.781 (1)	Remerci	ements.				
C8	0.965 (2)	0.884 (1)	0.658 (1)	Les	auteurs remerci	ent Messieur	s les Professe	urs J. Tou	ssaint
C9	1.165 (2)	0.876 (1)	0.574 (1)		enson pour l'in				
			410		BIB	LIOGRAPHI	E ET NOTES	8	
TeN1	X/A	Y/B	Z/C						
Ø. 1	0.5020 (0)	0.2800 (1)	0.8047 (1)		R. Weber et M	1. Renson, J.	Heterocyclic	Chem., 10), 267
Te 1 N2	0.5230 (0)	0.2500 (1)	0.736 (2)	(1973).					, ,
_	0.568 (1)	0.137 (1) $0.124 (1)$	0.576 (2)		R. Weber, J. 1				
C3	0.534 (1)	0.124 (1) $0.297 (1)$	0.376 (2)		G. Germain, P.	Main et M. N	⁄l. Woolfson, ⊅	1cta Cryst.,	A27,
C4	0.390 (1)		0.274 (2)	368 (19					
C5	0.351 (1)	0.266 (1)	0.274 (2) $0.192 (2)$		F. R. Ahmed				
C6	0.370 (1)	0.189 (1)	0.192 (2) $0.291 (2)$		ist of Crystal			grams, 2nd	Ed.,
C7	0.429 (1)	0.141 (1)	0.465 (2)		k Utrecht, 1				
C8	0.471 (1)	0.171 (1)	0.546 (2)		La liste des F				
C9	0.451 (1)	0.251 (1)	0.540 (2)	_	mètres d'agitati	on thermiqu	e peuvent être	e obtenus a	uprės
				des aute					_
	****	77.175	210		La première				
TeN2	X/A	Y/B	Z/C	trouve a	3,78 Å du carl	one C ₁₄ en 1	osition equiv	alente 2 tra	nslate
	0.0710 (0)	0.055((1)	0.0020 (0)		ns la direction	x et 2c suiv	ant z (1 U 2). Les pos	itions
Te 11	0.8748 (0)	0.0776 (1)	0.9030 (2)	equivale	ntes sont:				
N12	0.951 (1)	0.080 (1)	0.800 (2)						
C13	0.958 (1)	0.000 (1)	0.730 (2)		SeN			TeN	
C14	0.821 (1)	-0.139 (1)	0.798 (2)			_			
C15	0.825 (1)	-0.227 (1)	0.719 (2)	1	x y	z	x	y	Z
C16	0.871 (1)	-0.245 (1)	0.641 (3)	2	½- x -y	½+z	½- X	½+v	-z
C17	0.917 (1)	-0.171 (1)	0.647 (2)	4	½- x -y	/2TL	/Z-X	/4 · y	-6
C18	0.914 (1)	-0.082 (1)	0.728 (2)	3	1/2+ x 1/2- V	-z	-½+X	-½-V	+z
C19	0.866 (1)	-0.063 (1)	0.798 (2)	J	/4TA /2-Y	-z	-/2TX	-/2-y	(L
				4	-x ½+y	⅓-z	-x	-y	-Z
			Tab	leau 4					

Longueur des liaisons (Å).

	SeN site 1	SeN site 2	TeN1	TeN2	TeN3
X-N	1.82 (1)	1.89 (2)	2.12 (1)	2.09 (1)	2.11 (1)
X-C9	1.82 (1)	1.89 (1)	2.08 (1)	2.08 (1)	2.09 (1)
N-C3	1.41 (3)	1.45 (3)	1.28 (2)	1.27 (2)	1.27 (2)
C3-C8	1.46 (3)	1.41 (3)	1.45 (2)	1.46 (2)	1.46 (2)
C4-C5	1.36 (2)	1.40 (2)	1.39 (2)	1.37 (2)	1.34 (2)
C4-C9	1.41 (1)	1.39 (1)	1.40 (2)	1.42 (2)	1.41 (2)
C5-C6	1.38 (2)	1.38 (2)	1.37 (2)	1.38 (3)	1.36 (3)
C6-C7	1.40 (2)	1.36 (2)	1.38 (2)	1.40 (3)	1.42 (3)
C7-C8	1.39 (1)	1.41 (1)	1.39 (2)	1.38 (2)	1.38 (2)
C8-C9	1.38 (1)	1.38 (1)	1.42 (2)	1.38 (2)	1.40 (2)

Tableau 5 Angles de valence (°).

	SeN site 1	SeN site 2	TeN1	TeN2	TeN3
C9-X-N	87.0 (7)	88.9 (7)	80.3 (5)	80.0 (5)	79.8 (5)
X-N-C3	114.0 (15)	106.3 (15)	112.9 (10)	113.5 (11)	113.7 (10)
N-C3-C8	111.4 (18)	118.3 (19)	119.8 (13)	119.3 (15)	119.5 (14)
C5-C4-C9	118.4 (10)	116.4 (10)	119.1 (13)	119.2 (14)	118.8 (15)
C4-C5-C6	121.4 (11)	121.5 (11)	123.1 (15)	123.2(17)	123.1 (19)
C5-C6-C7	121.5 (11)	121.4 (11)	117.8 (15)	117.8 (18)	119.9 (19)
C6-C7-C8	116.4 (10)	118.4 (10)	122.1 (15)	119.8 (17)	117.3 (16)
C3-C8-C7	124.8 (13)	127.3 (13)	125.3 (13)	122.4 (15)	122.8 (14)
C3-C8-C9	112.6 (12)	113.1 (13)	115.6 (12)	115.2 (14)	$115.6\ (12)$
C7-C8-C9	122.6 (9)	119.6 (9)	119.2 (13)	122.1 (15)	121.6 (13)
X-C9-C4	125.7 (8)	125.0 (8)	129.9 (10)	130.3 (11)	129.4 (10)
X-C9-C8	114.7 (7)	112.3 (7)	111.4 (10)	111.8 (11)	111.5 (9)
C4-C9-C8	119.6 (9)	122.6 (9)	118.7 (12)	117.8 (14)	119.1 (12)

Tableau 6

Distances intermoléculaires ≤ 3.6 Å dans l'empilement du SeN (6).

Atome 1	Atome 2	en position équivalente	vecteur de translation	distance (Å)
Se 1	C8	2	2 2 1	3.47
Se 1	С9	2	2 2 1	3.52
Se 2	C7	2	1 2 1	3.11
Se 2	N 1	2	1 2 0	3.40
Se 2	N 2	2	1 2 0	3.23
N 1	C7	2	1 2 Ī	3.43
N 1	C3 1	2	127	3.34
N 2	C7	2	12 1	3.59
N 2	C3 1	2	12 1	3.24
C4	C8	3	0 1 1	3.53

Tableau 7

Distances intermoléculaires ≤ 3.6 Å dans l'empilement de TeN (6).

Atome 1	Atome 2	en position équivalente	vecteur de translation	distance (Å)
Te 1	N 12	3	0 1 0	2.46
	C 13	3	0 1 0	3.28
N 2	Te 21	1	0 0 0	2.48
	C 24	1	0 0 0	3.19
	C 29	1	0 0 0	3.17
С 3	Te 21	1	0 0 0	3.20
C 4	N 12	3	0 1 0	3.09
	C 13	3	0 1 0	3.51
C 5	N 22	3	0 1 1	3.51
C 6	C 29	4	1 0 1	3.60
С 9	N 12	3	0 1 0	3.08
Te 11	N 22	1	0 0 0	2.47
	C 23	1	0 0 0	3.40
C 14	N 22	1	0 0 0	3.13
	C 23	1	0 0 0	3.54
C 19	N 22	1	0 0 0	3.11
Frantish Cumman				

English Summary.

Anomalous physical properties (solubility and melting point) of 1,2-benzisotellurazole are explained by very short intermolecular

Te...N bonds (2.4 Å) found in the crystal structure. Such bonds are not present in the crystal structure of 1,2-benzisoselenazole and the physical properties are those expected.